
Tesla Engine Material (TEM)
Scripting
Version: 1.1

Introduction

Tesla Engine Material (TEM) scripts allow a developer to completely define how an object is

rendered in the engine in the form of a easy to read and modify text file. A typical material script will

contain a shader effect, parameter configurations, and a set of render states for single-pass or multi-pass

rendering techniques. The advantage of separating this logic from your C# code should be obvious, as

you can modify how your geometry is rendered without recompiling your application. This document

will provide a comprehensive overview of material scripting syntax, a description of available features,

and examples.

It is assumed the reader has an understanding of the graphics pipeline and the basic layout of

Tesla Engine's graphics/render systems. A great deal of features that a typical material script employs

will correspond to these C# objects, data types, and enumerations.

General Syntax

A material script is very similar to curly-brace programming languages, such as C#, where you

have blocks containing statements and potentially other blocks nested inside of them. Statements are

each placed on their own line, or separated by a semi-colon if on the same line. Comments are

permitted in the script and are ignored by the parser. Only “//” style single-line comments are allowed,

the “/* */” comment style is not supported. A comment continues from the “//” prefix to the end of the

line.

Additionally, keywords and syntax are not case sensitive. Identifiers and some value types (e.g.

file paths), however, are case sensitive. Case sensitivity will be explicitly specified in this document

where appropiate. Also, there is no defined order of sub blocks, as they can be declared out of order of

their usage. For example, parameter declaration blocks can come before an effect declaration.

1

Example:

Root {
//This is a comment
SubBlock BlockName {

Statement // So is this
}

//Brace placement is unimportant
SubBlock
{
 NestedBlock {

Statement
}

}

SubBlock {
Statement
//Two statements separated by a semicolon
Statement ; Statement

}
}

The following is a broad overview of a typical material script, illustrating all the valid sub

blocks. The next section goes into the composition and expected syntax, along with detailed examples

of each sub block type. If you understand how the runtime Material object is constructed, then writing

material scripts should come easily, as it is a natural extension of creating a material in C# code.

Material <name> : <parent_material> {
Effect {
 ….
}

MaterialParameters {
….

}

EngineParameters {
….

}

RenderStates {
….

}

2

Technique <name> {
Pass <name> {

….
}
….

}
}

Material Composition

A material consists of the following components:

1. A name and optionally, parent material

All materials are required to have a name identifying that material. However, these names do

not need to be unique. Every material may have a parent, which means that the child material inherits

everything the parent declares. This can be very useful in creating template TEM files that declare

effects, engine parameters, and render states while leaving specific parameter setting to child materials.

A child material will start off with everything the parent has and either override existing values or add

new ones. This allows you to quickly put together new materials that may only change several

parameters, such as a texture, without having to re-write the material in its entirety. This is also

recommended as the engine provides materials that can be inherited in its shader library.

Multiple materials can be contained in a single file. Material names need not be unique, but

each subsequent material must be separated by at least a white space or placed on a new line. In order

to support multiple materials, there are some special considerations when loading TEM files at runtime,

as specified in the “Loading Materials” section.

Syntax:

Material <name> : <parent_material> {

...
}

Examples:

Material MySkybox : Materials/Skybox.tem {

...

3

}

Material Phong {

...
}

2. A shader effect and a technique to use

Shaders are defined inside an effect, which are contained in a single file such as a HLSL Fx,

CgFx, or compiled TEBO file (and so on). An effect is a complete rendering description, it contains a

set of shader uniforms, vertex/pixel shaders, and one or more techniques, each with one or more passes.

A pass consists of a vertex/pixel shader pair and a number of render states.

Example:

Effect {
File : Shaders/MyEffect.tebo
Technique : MyTechniqueToUse

}

There should only ever be one effect block in your material script, as a material can only

contain a single effect. The technique specified here has to exist in the effect, although more techniques

can exist.

3. Material parameters

Parameters reside in a MaterialParameters block, their names must match with existing shader

uniforms in your effect. Parameters that do not exist in the shader are simply ignored.

Syntax:

MaterialParameters {
<type> <identifier> : <value>

}

Example:

MaterialParameters {
float Shininess : 2.0f

}

4

Parameter types match up with C# runtime types almost exactly. Data types are not case

sensitive. Numerical values that have more than one component have each component separated by a

white space. The table below shows all the valid types and expected values.

Data Type Value Comments
float 0.5f or 0.5 The “f” suffix is valid or can be dropped.
int 124
bool true / false Not case sensitive.

Vector2 25.5 32 Format: X Y
Vector3 100.5f 25.02f 19.5f Format: X Y Z
Vector4 64.2 0.24 2.5 43.9 Format: X Y Z W
Color 128 255 64 255 Clamped to 0-255 range, Format: R G B A

Quaternion Same as vector4
Matrix M11 M12 M13 M14

M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

Matrices are row-major and as thus, their
rows are laid out in sequential order

Texture1D Textures/MyTexture.jpg Case sensitive, as the path/file must exist.
Texture2D Same as Texture1D
Texture3D Same as Texture1D

TextureCube Same as Texture1D

4. Engine parameters

Engine parameters are very similar to material parameters, however they do not have a value

associated with them. Instead a shader uniform is bound to an engine value enumeration. This means

when the material is used in rendering, the engine will update the shader uniform dynamically with a a

value generated by the engine at runtime. A typical engine value is a WorldViewProjection matrix used

in transforming vertices from model space to clip space. Engine values tend to be per-frame

computations that can only be known at runtime, hence we only bind them to the shader uniform, rather

than provide a value.

5

Syntax:

EngineParameters {
<engine_value> : <identifier>

}

Example:

EngineParameters {
WorldViewProjection : WVP
CameraPosition : CamPos

}

Engine values are not case sensitive, but their spelling corresponds to the EngineValue

enumeration in the engine, the complete list as follows.

EngineValue Comments
WorldMatrix
ViewMatrix

ProjectionMatrix
WorldViewmatrix

WorldViewProjection
WorldInverseTranspose Used to correctly transform normals of geometry with non-

uniform scaling for lighting.
WorldMatrixInverse
ViewMatrixInverse

ProjectionMatrixInverse
Viewport A Vector4 representing the currently active viewport. X =

Viewport.X, Y = Viewport.Width,
Z = Viewport.Width, W = Viewport.Height

Resolution A Vector2 where X = Viewport.Width, Y = Viewport.Height
FrustumNearFar A Vector2 where X = near, Y = Far

AspectRatio Float equal to Width / Height
CameraPosition Vector3 of the camera's position.
CameraDirection Vector3 (normalized)

CameraRight Vector3 (normalized)

6

CameraUp Vector3 (normalized)
Time Total time in seconds since the app was started (float)

TimePerFrame Time in seconds since the last frame was rendered (float)
FrameRate Frames per second (float)

RandomFloat Next random float from the engine's random value stream
RandomInt Next random int from the engine's random value stream

5. Render states

Render states are immutable objects that configure the rendering pipeline. There are four types

of states: BlendState, RasterizerState, DepthStencilState, and SamplerState. Sampler states are

defined once per material, while the other three states may be different for each pass in a technique.

Therefore, declaring sampler states take a slightly different approach. All render states are declared in a

RenderStates block.

Blend, rasterizer, and depth stencil states must be declared with an identifier, similar to how you

declare parameters. Since render states are immutable once they are created and bound to the pipeline,

you can easily re-use them (in fact, it's encouraged). So for a complex material with multiple

techniques and passes, you can declare a single render state with a certain configuration and set it in

multiple techniques or passes, which will re-use the same object instance at runtime.

There are two options when declaring any of these three states:

1. Use a pre-defined engine render state. These are the static properties in each render state

which provides different render state configurations. This method uses parameter declaration

syntax, where the value is the name of the pre-defined state. The name is not case sensitive, but

its spelling corresponds to the C# static properties.

2. Define your own configuration, which is contained in a nested curly brace block, where each

statement corresponds to a property assignment. Property names are not case sensitive, but their

spelling corresponds to the C# properties of each state object. The syntax is similar to setting

engine values. Like with engine values, if the value is an enum, the enum name should be

omitted. Not all properties need to be specified, as each omitted property has a default value.

7

Syntax:

RenderStates {
<render_state> <identifier> : <predefined_state>
<render_state> <identifier> {

<property_name> : <value>
}

}

Examples:

RenderStates {
RasterizerState rastState1 : CullNoneWireframe

RasterizerState rastState2 {
Cull : None //Corresponds to CullMode.None
Fill : Wireframe //FillMode.Wireframe

}
}

RenderStates {
BlendState blendOff : Opaque

DepthStencilState dss {
DepthEnable : true
DepthFunction : GreaterEqual //CompareFunction.GreaterEqual

}

BlendState blend {
ColorSourceBlend : SourceAlpha //Blend.SourceAlpha
ColorDestinationBlend : One //Blend.One

}
}

Every render state is tracked by its identifier. In circumstances where there are duplicate state

names of the same state type, the most recently declared state is used. So if a child material defines a

render state with an identifier that is also defined in the parent script, the state declared in the child will

be used for any techniques or passes defined in the child instead of the one declared in the parent script.

An internal cache in the parser maintains unique render states between instances, in order to maximize

reusability. If two materials declare the same render state, then only one state is created and shared

between the two instances. The predefined states provided by the engine are always shared due how

they are acquired.

8

Sampler states on the other hand are not declared with an identifier, instead they use a prefix

identifying which pipeline stage and a suffix identifying the sampler index. The maximum sampler

index for each stage is defined at runtime by the render system that creates the sampler state graphics

objects. Sampler states relate to textures used in your shaders, as they are used to sample textures,

which is why they use a different declaration syntax. Like the other render states, you can declare

predefined sampler states or create a custom declaration.

Syntax:

RenderStates {
<Vertex | Pixel>SamplerState[index] : <predefined_state>
<Vertex | Pixel>SamplerState[index] {

<property_name> : <value>
}

}

Example:

RenderStates {
PixelSamplerState[0] : PointWrap

SamplerState[1] : LinearWrap //No prefix is the same as Pixel

VertexSamplerState[0] {
Filter : Linear //TextureFilter.Linear
AddressU : Wrap //TextureAddressMode.Wrap
AddressV : Wrap //TextureAddressMode.Wrap

}
}

A complete listing of all predefined render states, their properties, and corresponding values are

as follows. Default values for properties are specified in parentheses. Predefined render states, render

state properties, and enumeration values are not case sensitive.

BlendState

Predefined BlendStates Comments
AdditiveBlend Alpha/Color SourceBlend set to SourceAlpha,

Alpha/Color DestinationBlend set to One
Opaque Default (blending disabled)

AlphaBlendNonPremultiplied Alpha/Color SourceBlend set to SourceAlpha,

9

Alpha/Color DestinationBlend set to InverseSourceAlpha
AlphaBlendPremultiplied Alpha/Color SourceBlend set to One,

Alpha/Color DestinationBlend set to InverseSourceAlpha

Property Value (default)
AlphaBlendFunction BlendFunction enum (Add)
AlphaSourceBlend Blend enum (One)

AlphaDestinationBlend Blend enum (Zero)
ColorBlendFunction BlendFunction enum (Add)
ColorSourceBlend Blend enum (One)

ColorDestinationBlend Blend enum (Zero)
BlendFactor Vector4 (1.0 1.0 1.0 1.0)

MultiSampleMask Integer (int.MaxValue)
BlendEnable[index] Boolean (index 0 true, rest false)

ColorWriteChannels[index] ColorWriteChannels bitflag | ColorWriteChannels
bitflag (default is All) E.g.:

Red | Green | Blue

RasterizerState

Predefined RasterizerStates Comments
CullNone Cull set to None, VertexWinding set to Clockwise

CullBackClockwiseFront Cull set to Back, VertexWinding set to Clockwise
CullBackCounterClockwiseFront Cull set to Back, VertexWinding set to CounterClockwise

CullNoneWireframe Cull set to None, Fill set to Wireframe, VertexWinding set to
Clockwise

Property Value (default)
Cull CullMode enum (Back)

VertexWinding VertexWinding enum (Clockwise)
DepthBias Integer (0)

Fill FillMode enum (Solid)
EnableMultiSampleAntiAlias Boolean (true)

EnableScissorTest Boolean (false)
SlopeScaledDepthBias Float (0.0)

10

DepthStencilState

Predefined DepthStencilStates Comments
None DepthEnable and DepthWriteEnable set to false

Default DepthEnable and DepthWriteEnable set to true
DepthWriteOff DepthEnable set to true, DepthWriteEnable set to false

Property Value (default)
DepthEnable Boolean (true)

DepthWriteEnable Boolean (true)
DepthFunction ComparisonFunction (LessEqual)
StencilEnable Boolean (false)

ReferenceStencil Integer (0)
CCWStencilFunction or

CounterClockwiseStencilFunction
ComparisonFunction (Always)

CCWStencilDepthFail or
CounterClockwiseDepthFail

StencilOperation (Keep)

CCWStencilFail or
CounterClockwiseStencilFail

StencilOperation (Keep)

CCWStencilPass or
CounterClockwiseStencilPass

StencilFunction (Keep)

StencilFunction ComparisonFunction (Always)
StencilDepthFail StencilOperation (Keep)

StencilFail StencilOperation (Keep)
StencilPass StencilOperation (Keep)

TwoSidedStencilEnable Integer (false)
StencilReadMask Integer (int.MaxValue)
StencilWriteMask Integer (int.MaxValue)

SamplerStates

Predefined SamplerStates Comments
PointWrap Filter set to Point, AddressU/V/W set to Wrap
PointClamp Filter set to Point, AddressU/V/W set to Clamp
LinearWrap Filter set to Linear, AddressU/V/W set to Wrap

11

LinearClamp Filter set to Linear, AddressU/V/W set to Clamp
AnisotropicWrap Filter set to Anisotropic, AddressU/V/W set to Wrap
AnisotropicClamp Filter set to Anisotropic, AddressU/V/W set to Clamp

Property Value (default)
AddressU TextureAddressMode enum (Clamp)
AddressV TextureAddressMode enum (Clamp)
AddressW TextureAddressMode enum (Clamp)

Filter TextureFilter enum (Point)
MaxAnisotropy Integer (4)

MipMapLevelOfDetailBias or
MipMapLoDBias

Float (0.0)

6. Techniques and passes

A technique consists of a number of passes, where each pass describes how to render an object

(e.g. a single draw call), which contains the following:

• A set of render states (Blend, DepthStencil, and Rasterizer)

• A vertex and pixel shader (defined in the effect)

In a material script, of these two you can only specify which render states are set per-pass. The

identifiers for both techniques and passes must match those defined in the effect file. Not all passes

need to be specified in the material file; only those that you intend to modify render states for. Passes

that are omitted will use the default render states. Likewise, you do not have to specify all three render

states in a pass, as the ones you omit will automatically be set to the default render state.

If a technique has multiple passes and you intend to set the same render state for each pass, you

can abbreviate the declarations by setting the render states inside the technique block and omitting any

nested pass blocks. Render states set at the technique level are used by all passes in that effect

technique, unless if explicitly overridden.

Additionally, exceptions will be thrown if the sampler state keywords are used in the technique/

pass blocks or if you set a render state that was not declared in a RenderStates block.

12

Syntax:

Technique <name> {
<render_state> : <identifier>
Pass <name> {

<render_state> : <identifier>
}

}

Example:

//Names are defined in the effect, and the render state identifiers
//were declared elsewhere
Technique MyTechnique {

//BlendState will be used for both Pass0 and Pass1
BlendState : blend

//Pass0 uses the default depth stencil state , and the “blend”
//BlendState specified above
Pass Pass0 {

//RasterizerState used only for Pass0
RasterizerState : rast

}

//Pass1 uses the default rasterizer and depth stencil states
Pass Pass1 {

BlendState : blendOff //Pass1 uses this blend state instead
}

//The technique may contain a “Pass2” (in the effect)
//that is omitted here, that //pass would use the “blend”
//BlendState and the default //rasterizer and depthstencil
//states.

}

13

Loading Materials

The engine's material parser supports loading a TEM file into two different engine objects:

1. A Material object, e.g.

Material mat = ContentManager.Load<Material>(“Materials/MyMaterial.tem”);

This loads the very first material in a file, regardless of how many materials are defined.

2. A MaterialCollection object, e.g.

MaterialCollection mat = ContentManager.Load<MaterialCollection>(“Materials/MyMaterial.tem”);

When dealing with single material scripts, the two methods are nearly identical, as the material

collection will only contain a single material. When multiple materials are involved, the first method

only loads the first material and caches it in the content manager. The second approach loads all

materials as a collection, which is cached. However, the individual materials are not cached in the

content manager.

14

More Examples

Here are some examples putting all of these aspects together to create a complete material:

A Complete Example:

//All materials must begin with the root material block, and must
//have a name
Material MyMaterial {

//The technique listed here will be the technique that is used f
//or rendering
Effect {

File : Shaders/MyEffect.tebo
Technique: MyTechniqueToUse

}

MaterialParameters {
float Shininess : 5.0f
Vector3 MatDiffuse : 0.25 0.75 1.0
Texture2D DiffuseMap : Textures/MyTexture.jpg

}

//The identifier WVP is a shader uniform, which is a 4x4 matrix.
//Every frame, the WorldViewProjection matrix is computed and
//sent to the shader automatically by the engine.
EngineParameters {

WorldViewProjection : WVP
}

//Render states are declared using an identifier, allowing you
//to create a state and re-use it for
//multiple techniques. Once created render states are immutable.
RenderStates {

RasterizerState rastState : CullBackCounterClockwiseFront

PixelSamplerState[0] {
Filter : Linear
AddressU : Clamp
AddressV : Clamp

}
}

//Technique and pass names must match those in the shader effect
Technique MyTechniqueToUse {

15

//Each pass is allowed a single BlendState,
//RasterizerState, or DepthStencilState
//If no state is set, the default ones are used
Pass pass1 {

RasterizerState : rastState
}

}
}

Example from the Samples (Planet sample):

Material PlanetMaterial {

Effect {
File : Shaders/PlanetEffect.tebo
Technique : Planet

}

MaterialParameters {
Texture2D DiffuseMap : Textures/earth_diffuse.dds
Texture2D CloudMap : Textures/earth_clouds.dds
Texture2D Normalmap : Textures/earth_normal.dds
Texture2D SpecularMap : Textures/earth_specular.jpg
Texture2D LightsMap : Textures/earth_lights.dds
bool UseSpecularMap : true
float SkyScale : 2.5
float CloudScale : 1.0
float CloudRotateDirection : - 1.0
Vector3 IntWaveLength : 5.602 9.478 19.646
float InnerRadius : 200.0
float OuterRadius : 205.0
float InnerRadiusSquared : 40000.0
float OuterRadiusSquared : 42025.0
float KrESun : 0.0375
float KmESun : 0.0225
float Kr4PI : 0.0314
float Km4PI : 0.0188
float Scale : 0.2
float ScaleOverScaleDepth : 0.8
float ScaleDepth : 0.25
float InvScaleDepth : 0.4
float G : -0.95
float Gsquared : 0.9025

}

EngineParameters {
WorldViewProjection : WorldViewProj

16

WorldMatrix : World
CameraPosition : CamPos

}

RenderStates {
RasterizerState rs : CullbackCounterClockwiseFront
BlendState bs : AdditiveBlend

}

Technique Planet {
Pass SkyFromSpace {

RasterizerState : rs
BlendState : bs

}

Pass CloudsFromSpace {
BlendState : bs

}
}

}

Parent-Child Example:

This is a useful example, as you can derive from any of the built-in material scripts that are

located in the engine's shader library. Each engine render system defines default content, which is

searched if the content manager cannot locate a file. If in your project, you do not redefine

“SkyBox.tem” in the root content path, the child material below will load the material by that name

from the default content manager. Alternatively, you can access the render system's default content

manager yourself.

This is the easiest and quickest way to create materials where you only want to change a color

or a texture of one of the built-int materials, and not have to bother with anything else.

(Parent, defined in Tesla's shader library)

Material SkyBox {

EngineParameters {
CameraPosition : CamPos
ViewMatrix : View
ProjectionMatrix : Proj

17

}

Effect {
File : SkyBoxEffect.tebo
Technique : Skybox

}

RenderStates {
RasterizerState rs : CullNone
DepthStencilState dss : DepthWriteOff

}

Technique Skybox {
RasterizerState : rs
DepthStencilState : dss

}
}

(Child, defined in the Samples)

Material SpaceSkybox : SkyBox.tem {

MaterialParameters {
TextureCube DiffuseMap : Textures/purplenebula.dds

}
}

18

